Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Trends Hear ; 28: 23312165241245219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613359

RESUMO

For people with profound hearing loss, a cochlear implant (CI) is able to provide access to sounds that support speech perception. With current technology, most CI users obtain very good speech understanding in quiet listening environments. However, many CI users still struggle when listening to music. Efforts have been made to preprocess music for CI users and improve their music enjoyment. This work investigates potential modifications of instrumental music to make it more accessible for CI users. For this purpose, we used two datasets with varying complexity and containing individual tracks of instrumental music. The first dataset contained trios and it was newly created and synthesized for this study. The second dataset contained orchestral music with a large number of instruments. Bilateral CI users and normal hearing listeners were asked to remix the multitracks grouped into melody, bass, accompaniment, and percussion. Remixes could be performed in the amplitude, spatial, and spectral domains. Results showed that CI users preferred tracks being panned toward the right side, especially the percussion component. When CI users were grouped into frequent or occasional music listeners, significant differences in remixing preferences in all domains were observed.


Assuntos
Implante Coclear , Implantes Cocleares , Música , Humanos , Idioma , Prazer
2.
Bioengineering (Basel) ; 10(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38135942

RESUMO

Numerous potential drug targets, including G-protein-coupled receptors and ion channel proteins, reside on the cell surface as multi-pass membrane proteins. Unfortunately, despite advances in engineering technologies, engineering biologics against multi-pass membrane proteins remains a formidable task. In this review, we focus on the different methods used to prepare/present multi-pass transmembrane proteins for engineering target-specific biologics such as antibodies, nanobodies and synthetic scaffold proteins. The engineered biologics exhibit high specificity and affinity, and have broad applications as therapeutics, probes for cell staining and chaperones for promoting protein crystallization. We primarily cover publications on this topic from the past 10 years, with a focus on the different formats of multi-pass transmembrane proteins. Finally, the remaining challenges facing this field and new technologies developed to overcome a number of obstacles are discussed.

3.
Acta Pharm Sin B ; 13(11): 4511-4522, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969728

RESUMO

Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients. Here, we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells, especially myeloid derived suppressor cells (MDSCs) and CD8+ T cells. Then, peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique, and its mutant peptide VS3 was obtained by molecular docking based mutation. Peptide VS3 could bind VISTA with high affinity and block its interaction with ligand PSGL-1 under acidic condition, and elicit anti-tumor activity in vivo. The peptide DVS3-Pal was further designed by d-amino acid substitution and fatty acid modification, which exhibited strong proteolytic stability and significant anti-tumor activity through enhancing CD8+ T cell function and decreasing MDSCs infiltration. This is the first study to develop peptides to block VISTA/PSGL-1 interaction, which could act as promising candidates for cancer immunotherapy.

4.
Biomolecules ; 13(10)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37892215

RESUMO

BACKGROUND: Adhirons are small (10 kDa) synthetic ligands that might represent an alternative to antibody fragments and to alternative scaffolds such as DARPins or affibodies. METHODS: We prepared a conceptionally new adhiron phage display library that allows the presence of cysteines in the hypervariable loops and successfully panned it against antigens possessing different characteristics. RESULTS: We recovered binders specific for membrane epitopes of plant cells by panning the library directly against pea protoplasts and against soluble C-Reactive Protein and SpyCatcher, a small protein domain for which we failed to isolate binders using pre-immune nanobody libraries. The best binders had a binding constant in the low nM range, were produced easily in bacteria (average yields of 15 mg/L of culture) in combination with different tags, were stable, and had minimal aggregation propensity, independent of the presence or absence of cysteine residues in their loops. DISCUSSION: The isolated adhirons were significantly stronger than those isolated previously from other libraries and as good as nanobodies recovered from a naïve library of comparable theoretical diversity. Moreover, they proved to be suitable reagents for ELISA, flow cytometry, the western blot, and also as capture elements in electrochemical biosensors.


Assuntos
Biblioteca de Peptídeos , Anticorpos de Domínio Único , Ensaio de Imunoadsorção Enzimática , Anticorpos de Domínio Único/farmacologia , Regiões Determinantes de Complementaridade , Epitopos
5.
Methods Mol Biol ; 2702: 107-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679618

RESUMO

Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.


Assuntos
Artrite Reumatoide , Bacteriófagos , Antígenos de Grupos Sanguíneos , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais , Bacteriófagos/genética , Biotecnologia , Camelidae , Fator V
6.
Methods Mol Biol ; 2702: 247-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679623

RESUMO

The most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved. In this review, we describe a fast high-throughput antibody (scFv) selection procedure in 96-well microtiter plates. The given detailed protocol allows the antibody selection ("panning"), screening, and identification of monoclonal antibodies in less than 2 weeks. Furthermore, we describe an on-rate panning approach for the selection of monoclonal antibodies with fast on-rates.


Assuntos
Anticorpos Monoclonais , Bacteriófagos , Humanos , Anticorpos Monoclonais/genética , Bioensaio , Técnicas de Visualização da Superfície Celular , Tecnologia
7.
Methods Mol Biol ; 2702: 261-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679624

RESUMO

Antibody phage display is a valuable in vitro technology to generate recombinant, sequence-defined antibodies for research, diagnostics, and therapy. Up to now (autumn 2022), 14 FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab. Additionally, recombinant, sequence-defined antibodies have significant advantages over their polyclonal counterparts.For a successful in vitro antibody generation by phage display, a suitable panning strategy is highly important. We present in this book chapter the panning in solution and its advantages over panning with immobilized antigens and give detailed protocols for the panning and screening procedure.


Assuntos
Anticorpos , Técnicas de Visualização da Superfície Celular , Estações do Ano , Tecnologia , Fenômenos Magnéticos
8.
Methods Mol Biol ; 2702: 315-325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679627

RESUMO

Antibody phage display selection on cells is a powerful tool to generate highly specific antibodies recognizing a target in its cell bound conformation. Unlike phage display selections on immobilized proteins, it is not hampered by difficulties caused by recombinant protein expression of target proteins like altered folding or loss of epitopes. It also allows the generation of antibodies against proteins that are commercially unavailable, due to high production costs or lack of production. It is also a promising approach for single and especially multi-pass membrane proteins for which the complex secondary and tertiary structures can often not be retained upon recombinant protein expression. The selected antibodies are not only tools for in vivo studies but also used for the development of diagnostic assays and for therapeutical applications. Here, we describe a straightforward protocol for generation and screening of scFv binders by phage display selections on cells.


Assuntos
Técnicas de Visualização da Superfície Celular , Anticorpos , Bioensaio , Proteínas de Membrana/genética
9.
Methods Mol Biol ; 2702: 291-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679626

RESUMO

Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.


Assuntos
Bacteriófagos , Nanopartículas de Magnetita , Humanos , Anticorpos , Bioprospecção , Técnicas de Visualização da Superfície Celular
10.
Methods Mol Biol ; 2702: 395-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679631

RESUMO

Human antibodies are the most important class of biologicals, and antibodies - human and nonhuman - are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.


Assuntos
Anticorpos , Produtos Biológicos , Humanos , Afinidade de Anticorpos , Reação em Cadeia da Polimerase , Bioensaio
11.
Methods Mol Biol ; 2702: 419-431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679633

RESUMO

An important, and rapidly growing class of drugs are antibodies which can be discovered through phage display technology. In this technique, antibodies are typically first enriched through consecutive rounds of selection on a target antigen with amplification in bacteria between each selection round. Thereafter, a subset of random individual clones is analyzed for binding in a screening procedure. This results in discovery of the most abundant antibodies in the pool. However, there are multiple factors affecting the enrichment of antibodies during the selection resulting in a very complex output pool of antibodies. A few antibodies are present in many copies and others only in a few copies, where the most abundant antibodies are not necessarily the functionally best ones. In order to utilize the full potential of the output from a phage display selection, and enable discovery of low abundant, potentially functionally important clones, deep mining technologies are needed. In this chapter, two methods for deep mining of an antibody pool are described, protein depletion and antibody blocking. The methods can be applied both when the target is a single antigen and on complex antigen mixtures such as whole cells and tissues.


Assuntos
Anticorpos , Bacteriófagos , Bacteriófagos/genética , Técnicas de Visualização da Superfície Celular , Células Clonais , Tecnologia
12.
Methods Mol Biol ; 2702: 543-561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679638

RESUMO

Phage display is an efficient and robust method for protein-protein interaction studies. Although it is mostly used for antibody generation, it can be also utilized for the discovery of immunogenic proteins that could be used as biomarkers. Through this technique, a genome or metagenome is fragmented and cloned into a phagemid vector. The resulting protein fragments from this genetic material are displayed on M13 phage surface, while the corresponding gene fragments are packaged. This packaging process uses the pIII deficient helperphage, called Hyperphage (M13KO7 ΔpIII), so open reading frames (ORFs) are enriched in these libraries, giving the name to this method: ORFeome phage display. After conducting a selection procedure, called "bio-panning," relevant immunogenic peptides or protein fragments are selected using purified antibodies or serum samples, and can be used as potential biomarkers. As ORFeome phage display is an in vitro method, only the DNA or cDNA of the species of interest is needed. Therefore, this approach is also suitable for organisms that are hard to cultivate, or metagenomic samples, for example. An additional advantage is that the biomarker discovery is not limited to surface proteins due to the presentation of virtually every kind of peptide or protein fragment encoded by the ORFeome on the phage surface. At last, the selected biomarkers can be the start for the development of diagnostic assays, vaccines, or protein interaction studies.


Assuntos
Pesquisa Biomédica , Anticorpos , Bacteriófago M13/genética , Bioensaio , Técnicas de Visualização da Superfície Celular
13.
Methods Mol Biol ; 2702: 563-585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37679639

RESUMO

Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.


Assuntos
Bacteriófagos , Técnicas de Visualização da Superfície Celular , Epitopos , Mapeamento de Epitopos , Anticorpos Monoclonais , Bacteriófagos/genética
14.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37760524

RESUMO

PURPOSE: Develop a treatment planning framework for neurosurgeons treating high-grade gliomas with LITT to minimize the learning curve and improve tumor thermal dose coverage. METHODS: Deidentified patient images were segmented using the image segmentation software Materialize MIMICS©. Segmented images were imported into the commercial finite element analysis (FEA) software COMSOL Multiphysics© to perform bioheat transfer simulations. The laser probe was modeled as a cylindrical object with radius 0.7 mm and length 100 mm, with a constant beam diameter. A modeled laser probe was placed in the tumor in accordance with patient specific patient magnetic resonance temperature imaging (MRTi) data. The laser energy was modeled as a deposited beam heat source in the FEA software. Penne's bioheat equation was used to model heat transfer in brain tissue. The cerebrospinal fluid (CSF) was modeled as a solid with convectively enhanced conductivity to capture heat sink effects. In this study, thermal damage-dependent blood perfusion was assessed. Pulsed laser heating was modeled based on patient treatment logs. The stationary heat source and pullback heat source techniques were modeled to compare the calculated tissue damage. The developed bioheat transfer model was compared to MRTi data obtained from a laser log during LITT procedures. The application builder module in COMSOL Multiphysics© was utilized to create a Graphical User Interface (GUI) for the treatment planning framework. RESULTS: Simulations predicted increased thermal damage (10-15%) in the tumor for the pullback heat source approach compared with the stationary heat source. The model-predicted temperature profiles followed trends similar to those of the MRTi data. Simulations predicted partial tissue ablation in tumors proximal to the CSF ventricle. CONCLUSION: A mobile platform-based GUI for bioheat transfer simulation was developed to aid neurosurgeons in conveniently varying the simulation parameters according to a patient-specific treatment plan. The convective effects of the CSF should be modeled with heat sink effects for accurate LITT treatment planning.

15.
MAbs ; 15(1): 2249947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635331

RESUMO

Antibody discovery against complex antigens is limited by the availability of a reproducible pure source of concentrated properly folded antigen. We have developed a technology to enable direct incorporation of membrane proteins such as GPCRs and into the membrane of poxvirus. The protein of interest is correctly folded and expressed in the cell-derived viral membrane and does not require any detergents or refolding before downstream use. The poxvirus is selective in which proteins are incorporated into the viral membrane, making the antigen poxvirus an antigenically cleaner target for in vitro panning. Antigen-expressing virus can be readily purified at scale and used for antibody selection using any in vitro display platform.


Assuntos
Antígenos , Biblioteca de Peptídeos , Anticorpos , Proteínas de Membrana , Membrana Celular
16.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37561410

RESUMO

Monoclonal antibody (mAb) therapies have rapidly become a powerful class of therapeutics with applications covering a diverse range of clinical indications. Though most widely used for the treatment of cancer, mAbs are also playing an increasing role in the defense of viral infections, most recently with palivizumab for prevention and treatment of severe RSV infections in neonatal and pediatric populations. In addition, during the COVID-19 pandemic, mAbs provided a bridge to the rollout of vaccines; however, their continued role as a therapeutic option for those at greatest risk of severe disease has become limited due to the emergence of neutralization resistant Omicron variants. Although there are many techniques for the identification of mAbs, including single B cell cloning and immunization of genetically engineered mice, the low cost, rapid throughput and technological simplicity of antibody phage display has led to its widespread adoption in mAb discovery efforts. Here we used our 27-billion-member naïve single-chain antibody (scFv) phage library to identify a panel of neutralizing anti-SARS-CoV-2 scFvs targeting diverse epitopes on the receptor binding domain (RBD). Although typically a routine process, we found that upon conversion to IgG, a number of our most potent clones failed to maintain their neutralization potency. Kinetic measurements confirmed similar affinity to the RBD; however, mechanistic studies provide evidence that the loss of neutralization is a result of structural limitations likely arising from initial choice of panning antigen. Thus this work highlights a risk of scFv-phage panning to mAb conversion and the importance of initial antigen selection.


Assuntos
COVID-19 , Anticorpos de Cadeia Única , Animais , Camundongos , Humanos , Epitopos , Pandemias , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/química
17.
Methods Mol Biol ; 2681: 61-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405643

RESUMO

The majority of therapeutic antibodies, bispecific antibodies, and chimeric antigen receptor (CAR) T cells in cancer therapy are based on an antibody or antibody fragment that specifically binds a target present on the surface of a tumor cell. Suitable antigens that can be used for immunotherapy are ideally tumor-specific or tumor-associated and stably expressed on the tumor cell. The identification of new target structures to further optimize immunotherapies could be realized by comparing healthy and tumor cells using "omics" methods to select promising proteins. However, differences in post-translational modifications and structural alterations that can be present on the tumor cell surface are difficult to identify or even not accessible by these techniques. In this chapter, we describe an alternative approach to potentially identify antibodies targeting novel tumor-associated antigens (TAA) or epitopes by using cellular screening and phage display of antibody libraries. Isolated antibody fragments can be further converted into chimeric IgG or other antibody formats to investigate the anti-tumor effector functions and finally identify and characterize the respective antigen.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Antígenos de Superfície , Biblioteca de Peptídeos , Neoplasias/terapia , Antígenos , Antígenos de Neoplasias
18.
PeerJ ; 11: e15078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250708

RESUMO

Background: Phage display technology has been established as a powerful screening approach to select ligands or peptides for binding to proteins. Despite rapid growth in the field, there has been a relative dearth of quantitative criteria to measure the effectiveness of the process of phage display screening. Since human serum albumin (HSA) has been extensively studied as a drug carrier to extend the plasma half-life of protein therapeutics, the use of phage display technology is required for identifying albumin-binding peptides as the very promising strategy of albumin-binding against albumin fusion. The construction of albumin-binding drug requires the assessment of a large quantity of HSA-binding peptide (HSA binder) candidates for conjugation with therapeutic proteins. The use of the linear epitope mapping method has allowed researchers to discover many HSA-binding peptides. However, it may be inefficient to select these peptides based on sequence identity via randomly sequencing individual phage clones from enrichment pools. Method: Here, a simple assessment method to facilitate phage display selection of HSA-binding peptides was recommended. With experimentally determined phage titer, one can calculate the specificity ratios, the recovery yields and the relative dissociation constants, which are defined as quantitative criteria for panning and characterization of the binding phage fused peptides. Results: Consequently, this approach may not only enable more rapid and low-cost phage display screening, but also efficiently reduce pseudo-positive phages selected as HSA binders for conjugation with therapeutic proteins.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Humanos , Peptídeos/genética , Técnicas de Visualização da Superfície Celular , Albuminas/metabolismo , Bacteriófagos/genética , Albumina Sérica Humana/metabolismo
19.
Cell Rep Methods ; 3(3): 100429, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056366

RESUMO

Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.


Assuntos
Anticorpos , Proteínas de Membrana , Antígenos , Receptores Acoplados a Proteínas G/genética
20.
Biomolecules ; 13(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36979486

RESUMO

Vaccination against dengue virus is challenged by the fact that a generic immune response can induce antibody-dependent-enhancement (ADE) in secondary infections. Only some antibodies targeting a quaternary epitope formed by the dimerization of the virus protein E possess sufficient neutralizing capacity. Therefore, the immunization with anti-idiotypic antibodies of neutralizing antibodies might represent a safe vaccination strategy. Starting from a large pre-immune library, we succeeded in isolating a wide set of anti-idiotypic nanobodies characterized by selective and strong binding to the paratope of the neutralizing antibody 1C10. However, the mice immunized with such constructs did not produce effective antibodies, despite at least some of them eliciting an immune response selective for the nanobody variable regions. The results suggest that complex conformational epitopes might be difficult to be recreated by anti-idiotypic structures. The selection process of the anti-idiotypic candidates might be optimized by applying epitope mapping and modeling approaches aimed at identifying the key residues that is necessary to bind to trigger selective immune response.


Assuntos
Vírus da Dengue , Dengue , Anticorpos de Domínio Único , Animais , Camundongos , Epitopos/química , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...